Liquid hydrogen has a large calorific value. When the same mass, it emits more heat than other fuel combustion, which can make the rocket achieve a large initial speed, so liquid hydrogen should be selected as the fuel of the rocket engine. Chemically speaking, the energy density (energy per unit weight) of liquid hydrogen is high.
So liquid hydrogen is used as a propellant. Therefore, hydrogen has the advantage of being a fuel: it burns a lot of heat, and the product is pollution-free water;It can be made of water, and water can be generated by combustion, which can be regenerated.
High propulsion performance: Liquid hydrogen has excellent propulsion performance. The combustion combination of liquid hydrogen and liquid oxygen produces a very high exhaust speed, which is required to propel the rocket. High exhaust speed means that the rocket can break away from the earth's gravity at a higher speed, enter orbit and explore space.
The reasons why liquid hydrogen is used as rocket fuel are as follows: liquid hydrogen has a high calorific value and can release more heat when it completely burns the same mass of hydrogen. Liquid hydrogen is an ideal energy material that can be used to obtain great energy efficiency and low-cost energy.
The advantage of liquid hydrogen is that it is completely pollution-free, and the product is water, and it has greater thrust and better economy. Liquid hydrogen is currently being studied in various countries, and its advantages are good safety and environmental protection.There is a kind of fuel agent called "malone" that is also commonly used, but it is both toxic and corrosive.
1. The rocket engine used in Saturn 5 rocket is the Saturn rocket engine (S-ICD S). The Saturn rocket engine is a high-performance liquid oxygen/liquid hydrogen rocket engine, which is the main power source used by the National Aeronautics and Space Administration (NASA) for the Saturn V rocket.
2. Its core stage is based on the design of the Long March 7 launch vehicle and the Long March 3A series. The first sub-stage of the rocket adopts two YF-100 liquid oxygen kerosene engines, and the second sub-stage of the rocket adopts the YF-75 liquid hydrogen liquid oxygen engine (dual machine).
3. The first sub-stage of the H2A rocket uses the LE-7A liquid hydrogen-liquid-oxygen main engine with a thrust of 110 tons, and the second sub-stage uses the LE-5B liquid hydrogen-liquid-oxygen main engine with a thrust of 137 kN.
4. The Chang'e-5 rocket uses a liquid-oxygen and liquid-hydrogen engine for the first-class core and the second-class core. Booster (first separation), using liquid oxygen + kerosene.
5. In terms of the engine, the SLS launch vehicle is equipped with a strong RS-25 liquid hydrogen liquid oxygen engine, but its cost is so high that a single launch mission of "Falcon 9" can be purchased! And one rocket needs to carry four, which can completely buy a "heavy Falcon" rocket.
In order to optimize the configuration of Saturn V, they adopted the F rocket engine and the new J2 rocket engine. The combination of the two lays the hardware foundation for its successful launch, and liquid hydrogen liquid oxygen propellant was used during the launch process, which also It laid the driving foundation for the successful launch of Mars 5.
F-1 rocket engine The world's largest thrust single-chamber liquid rocket engine developed by the United States is used for the Saturn 5 rocket, with a single thrust of 700 tons, using kerosene as fuel, and liquid oxygen as an oxidizing agent.
F-1 rocket engine is a kerosene liquid oxygen engine designed and manufactured by Rockdain in the United States, which is used for the first stage of Saturn V. F-1 is the single-nezzle liquid engine with the largest thrust in use.
Saturn 5 is currently the world's largest practical rocket, with a total weight of 3,038 tons, and the total thrust of the first-class engine is as high as 3,408 tons, which is equivalent to the total thrust of dozens of large passenger aircraft. The designer of Saturn 5 is Von Braun, a crazy scientist from Germany.
1. The advantages of using liquid hydrogen as aviation fuel are: liquid hydrogen has high energy density, zero emissions, fast filling, suitable for long-range flights, energy diversity and renewable energy matching, etc.
2. The biggest advantage is that its combustion product is water and does not pollute the environment. More heat is released during combustion, about 3 times that of gasoline of the same mass, 9 times that of alcohol, and 5 times that of coke. As an energy source, hydrogen has advantages that other energy sources do not have and is widely used.
3. The advantages of liquid hydrogen as an aviation fuel are mainly manifested in the following aspects: High energy density: Liquid hydrogen has a high energy density, which means that liquid hydrogen per unit mass contains more energy, so it can provide longer range and greater thrust.
1. The most obvious advantage of liquid oxygen kerosene engine is that it can be stored at room temperature. Compared with liquid hydrogen, hydrogen storage is safe and convenient, with high thrust, but cannot be reused. But as the first-stage fuel of the rocket, the situation is not good. This high-pressure posture is the main reason.
2. The specific calorific value of hydrogen must be greater than that of kerosene. After all, H2 is the lightest monomer. It can be said that liquid hydrogen liquid oxygen propellant consumes the same mass and provides the most energy! But if you put the thrust on the larger ratio, that belongs to the power size, just like saying which motor of the car has more horsepower.
3. Liquid engines can store propellants: kerosene, nitric acid, etc.Low-temperature propellant: liquid hydrogen, liquid oxygen, etc. Liquid engine two-component propellant single-component propellant oxidant: liquid oxygen, nitric acid, hydrogen peroxide, nitrogen tetraoxide, etc. Combustion agents: liquid hydrogen, kerosene, alcohol, dimethyl, methylene, etc.
4. The third stage of China's "Long March" No. 3 carrier rocket engine adopts liquid hydrogen and liquid oxygen as propellants, becoming the third country in the world to master the technology of controlling liquid hydrogen. Hydrogen is the most active of all elements, and it is extremely difficult to control the combustion of liquid hydrogen.
1. The advantages of liquid hydrogen as an aviation fuel are mainly manifested in the following aspects: high energy density: liquidHydrogen has a high energy density, which means that liquid hydrogen per unit mass contains more energy, so it can provide a longer range and greater thrust.
2. The advantages of using liquid hydrogen as aviation fuel are: liquid hydrogen has high energy density, zero emissions, fast filling, suitable for long-range flights, energy diversity and renewable energy matching, etc.
3. It can be made with widespread water as raw material. The biggest advantage is that its combustion product is water, which does not pollute the environment. More heat is released during combustion, about 3 times that of gasoline of the same mass, 9 times that of alcohol, and 5 times that of coke.
HS code compliance in cross-border rail freight-APP, download it now, new users will receive a novice gift pack.
Liquid hydrogen has a large calorific value. When the same mass, it emits more heat than other fuel combustion, which can make the rocket achieve a large initial speed, so liquid hydrogen should be selected as the fuel of the rocket engine. Chemically speaking, the energy density (energy per unit weight) of liquid hydrogen is high.
So liquid hydrogen is used as a propellant. Therefore, hydrogen has the advantage of being a fuel: it burns a lot of heat, and the product is pollution-free water;It can be made of water, and water can be generated by combustion, which can be regenerated.
High propulsion performance: Liquid hydrogen has excellent propulsion performance. The combustion combination of liquid hydrogen and liquid oxygen produces a very high exhaust speed, which is required to propel the rocket. High exhaust speed means that the rocket can break away from the earth's gravity at a higher speed, enter orbit and explore space.
The reasons why liquid hydrogen is used as rocket fuel are as follows: liquid hydrogen has a high calorific value and can release more heat when it completely burns the same mass of hydrogen. Liquid hydrogen is an ideal energy material that can be used to obtain great energy efficiency and low-cost energy.
The advantage of liquid hydrogen is that it is completely pollution-free, and the product is water, and it has greater thrust and better economy. Liquid hydrogen is currently being studied in various countries, and its advantages are good safety and environmental protection.There is a kind of fuel agent called "malone" that is also commonly used, but it is both toxic and corrosive.
1. The rocket engine used in Saturn 5 rocket is the Saturn rocket engine (S-ICD S). The Saturn rocket engine is a high-performance liquid oxygen/liquid hydrogen rocket engine, which is the main power source used by the National Aeronautics and Space Administration (NASA) for the Saturn V rocket.
2. Its core stage is based on the design of the Long March 7 launch vehicle and the Long March 3A series. The first sub-stage of the rocket adopts two YF-100 liquid oxygen kerosene engines, and the second sub-stage of the rocket adopts the YF-75 liquid hydrogen liquid oxygen engine (dual machine).
3. The first sub-stage of the H2A rocket uses the LE-7A liquid hydrogen-liquid-oxygen main engine with a thrust of 110 tons, and the second sub-stage uses the LE-5B liquid hydrogen-liquid-oxygen main engine with a thrust of 137 kN.
4. The Chang'e-5 rocket uses a liquid-oxygen and liquid-hydrogen engine for the first-class core and the second-class core. Booster (first separation), using liquid oxygen + kerosene.
5. In terms of the engine, the SLS launch vehicle is equipped with a strong RS-25 liquid hydrogen liquid oxygen engine, but its cost is so high that a single launch mission of "Falcon 9" can be purchased! And one rocket needs to carry four, which can completely buy a "heavy Falcon" rocket.
In order to optimize the configuration of Saturn V, they adopted the F rocket engine and the new J2 rocket engine. The combination of the two lays the hardware foundation for its successful launch, and liquid hydrogen liquid oxygen propellant was used during the launch process, which also It laid the driving foundation for the successful launch of Mars 5.
F-1 rocket engine The world's largest thrust single-chamber liquid rocket engine developed by the United States is used for the Saturn 5 rocket, with a single thrust of 700 tons, using kerosene as fuel, and liquid oxygen as an oxidizing agent.
F-1 rocket engine is a kerosene liquid oxygen engine designed and manufactured by Rockdain in the United States, which is used for the first stage of Saturn V. F-1 is the single-nezzle liquid engine with the largest thrust in use.
Saturn 5 is currently the world's largest practical rocket, with a total weight of 3,038 tons, and the total thrust of the first-class engine is as high as 3,408 tons, which is equivalent to the total thrust of dozens of large passenger aircraft. The designer of Saturn 5 is Von Braun, a crazy scientist from Germany.
1. The advantages of using liquid hydrogen as aviation fuel are: liquid hydrogen has high energy density, zero emissions, fast filling, suitable for long-range flights, energy diversity and renewable energy matching, etc.
2. The biggest advantage is that its combustion product is water and does not pollute the environment. More heat is released during combustion, about 3 times that of gasoline of the same mass, 9 times that of alcohol, and 5 times that of coke. As an energy source, hydrogen has advantages that other energy sources do not have and is widely used.
3. The advantages of liquid hydrogen as an aviation fuel are mainly manifested in the following aspects: High energy density: Liquid hydrogen has a high energy density, which means that liquid hydrogen per unit mass contains more energy, so it can provide longer range and greater thrust.
1. The most obvious advantage of liquid oxygen kerosene engine is that it can be stored at room temperature. Compared with liquid hydrogen, hydrogen storage is safe and convenient, with high thrust, but cannot be reused. But as the first-stage fuel of the rocket, the situation is not good. This high-pressure posture is the main reason.
2. The specific calorific value of hydrogen must be greater than that of kerosene. After all, H2 is the lightest monomer. It can be said that liquid hydrogen liquid oxygen propellant consumes the same mass and provides the most energy! But if you put the thrust on the larger ratio, that belongs to the power size, just like saying which motor of the car has more horsepower.
3. Liquid engines can store propellants: kerosene, nitric acid, etc.Low-temperature propellant: liquid hydrogen, liquid oxygen, etc. Liquid engine two-component propellant single-component propellant oxidant: liquid oxygen, nitric acid, hydrogen peroxide, nitrogen tetraoxide, etc. Combustion agents: liquid hydrogen, kerosene, alcohol, dimethyl, methylene, etc.
4. The third stage of China's "Long March" No. 3 carrier rocket engine adopts liquid hydrogen and liquid oxygen as propellants, becoming the third country in the world to master the technology of controlling liquid hydrogen. Hydrogen is the most active of all elements, and it is extremely difficult to control the combustion of liquid hydrogen.
1. The advantages of liquid hydrogen as an aviation fuel are mainly manifested in the following aspects: high energy density: liquidHydrogen has a high energy density, which means that liquid hydrogen per unit mass contains more energy, so it can provide a longer range and greater thrust.
2. The advantages of using liquid hydrogen as aviation fuel are: liquid hydrogen has high energy density, zero emissions, fast filling, suitable for long-range flights, energy diversity and renewable energy matching, etc.
3. It can be made with widespread water as raw material. The biggest advantage is that its combustion product is water, which does not pollute the environment. More heat is released during combustion, about 3 times that of gasoline of the same mass, 9 times that of alcohol, and 5 times that of coke.
Real-time HS code data integration
author: 2024-12-23 11:13Europe import export statistics
author: 2024-12-23 10:45Trade data-based price benchmarks
author: 2024-12-23 10:40International supply chain dashboards
author: 2024-12-23 10:03Real-time customs inspection logs
author: 2024-12-23 09:39End-to-end shipment tracking solutions
author: 2024-12-23 10:23Non-tariff barriers by HS code
author: 2024-12-23 08:58How to build a trade data strategy
author: 2024-12-23 08:48How to leverage analytics in procurement
author: 2024-12-23 08:37242.67MB
Check151.95MB
Check118.15MB
Check437.92MB
Check359.11MB
Check464.62MB
Check375.28MB
Check363.94MB
Check521.57MB
Check888.16MB
Check584.67MB
Check765.53MB
Check546.74MB
Check331.66MB
Check521.64MB
Check945.22MB
Check766.72MB
Check664.31MB
Check431.25MB
Check814.15MB
Check595.43MB
Check366.62MB
Check427.19MB
Check985.46MB
Check539.18MB
Check576.84MB
Check446.53MB
Check336.91MB
Check567.71MB
Check329.41MB
Check763.67MB
Check357.52MB
Check192.74MB
Check815.74MB
Check532.83MB
Check966.55MB
CheckScan to install
HS code compliance in cross-border rail freight to discover more
Netizen comments More
1381 Refrigeration equipment HS code checks
2024-12-23 11:09 recommend
629 How to ensure transparency in supply chains
2024-12-23 10:34 recommend
2002 HS code-based quality control checks
2024-12-23 10:33 recommend
145 Real-time commodity flow tracking
2024-12-23 09:39 recommend
1399 Pharma cold chain HS code analysis
2024-12-23 08:57 recommend